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We study the role of the superconducting proximity effect on the electron-phonon energy exchange in
diffusive normal metals �N� attached to superconductors �S�. The proximity effect modifies the spectral re-
sponse of the normal metal, in particular the local density of states. This leads to a weakening of the electron-
phonon energy relaxation. We show that the effect is easily observable with modern thermometry methods and
predict that it can be tuned in structures connected to multiple superconductors by adjusting the phase differ-
ence between superconducting order parameters at the two NS interfaces.
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I. INTRODUCTION

The state of an electron system subject to driving depends
on three ingredients: on the external driving, on the response
functions of the system, and on internal and external relax-
ations within the system and out of the system. For suffi-
ciently strong but constant driving, the system can be
brought out of equilibrium from its surroundings, in which
case the steady state can be determined from a balance be-
tween the driving and the relaxation. By far, the most rel-
evant relaxation mechanism for electrons in metals is caused
by the coupling between electrons and phonons. If the domi-
nant relaxation mechanism is known to a high accuracy, the
result of such heat balance can be used to study the driving.
An example of such a procedure takes place in hot-electron
thermal radiation detectors,1,2 which rely on the changes in
the electron temperature due to changes in the amount of
radiation coupling to the device and driving the electron sys-
tem. Typically such devices require accurate thermometry
through an easily measurable observable that is sensitive to
the electron temperature. One such frequently employed
thermometer is based on a junction between normal metals
�N� and superconductors �S�.

When a normal metal is brought in contact with supercon-
ductors, the superconducting order parameter leaks out to the
normal side. This superconducting proximity effect3 changes
the spectral response of the system4 but it also affects the
relaxation mechanisms. In this paper we study how this ef-
fect manifests itself in the electron-phonon coupling and
consider the schematic structure shown in Fig. 1. Some of
the features induced by the proximity effect are the changes
in the local density of states5 and a finite pair amplitude
inside the normal metal. For example, the density of states
obtains a minigap whose size Eg��� depends on the phase
difference � between the superconductors,6 at �=0 for ETh
��, Eg�3.12ETh whereas Eg=0 at �=�. Here ETh
=�D /L2 is the Thouless energy of the normal-metal piece
with a diffusion constant D and length L and � is the energy
gap of the superconductor.

By utilizing quasiclassical equations, we show how the
collision integrals describing the electron-phonon coupling
are changed by the proximity effect. We consider in particu-

lar the resulting effects on the electron-phonon relaxation
rate and the heat power flowing between the two systems.
Our examples are calculated for a SNS system where the
normal metal is sandwiched between two superconductors.
In this case the proximity-induced effects can also be tuned
by adjusting the phase difference between the order param-
eters of the two superconducting contacts.

This paper is organized as follows. At first we derive the
general diffusive-limit electron-phonon collision integrals
from Usadel equation7 for the Keldysh Green’s functions.8

Then we study especially the case when the electron system
can be described with Fermi function at a local temperature
Te and the phonon system with Bose function at temperature
Tp. For small deviations �Te−Tp��Te the collisions can be
described with a relaxation rate, whose dependence on en-
ergy, temperature, and � are shown for an example geom-
etry. Then we concentrate on the energy current between the
two systems, the quantity entering heat balance equations.
This quantity is well defined for arbitrary temperature differ-
ences between the electron and phonon systems. Its depen-
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FIG. 1. Schematic structure considered in this paper: the super-
conducting electrodes �assumed to be large and residing at the pho-
non temperature Tp� induce a proximity effect into the normal
metal. This proximity effect changes the spectrum of the electronic
excitations and thereby also the electron-phonon energy exchange

Q̇e-p. The spectrum can be controlled via the phase difference � of
the superconducting order parameter. This allows one to explore the
effect as shown below in Fig. 6.
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dence on position, length of the normal metal, and � are
exemplified for example geometries. Finally we suggest how
the phase dependence can be measured in a system easily
manufactured with present experimental techniques.

II. THEORETICAL FRAMEWORK

When describing nonequilibrium superconductivity, it is
convenient to concentrate separately on two types of
excitations:9 “longitudinal,” described by the antisymmetric
part fL= f�−E�− f�E� of the electron energy distribution func-
tion with respect to the chemical potential of the supercon-
ductor, and “transverse,” described by the symmetric part
fT=1− f�E�− f�−E�. The previous describes “thermal” exci-
tations whereas the latter is relevant for charged excitations.
The detailed forms of the collision integrals for the two types
of excitations are derived in the Appendix. At quasiequilib-
rium described by an effective temperature Te, the most rel-
evant type of excitations are the longitudinal ones. In this
case, assuming that the elastic mean-free path exceeds the
phonon wavelength,1 the collision integral is given by

IL = �� d		2 sgn�	�K�
,	�R�
,	;Te,Tp� . �1�

Here � is the electron-phonon coupling constant, the kernel

K�
,	� = N�
�N�
 + 	� − Fc�
�Fc�
 + 	� − Fs�
�Fs�
 + 	�

describes the changes in the spectrum of the junction, N�
� is
the �local� reduced density of states, and Fc�
� and Fs�
� are
projections of the pair amplitude �anomalous function� as
described in Eq. �A1�. The part depending on the phonon and
electron temperatures is in quasiequilibrium,

R�
,	;Te,Tp� = tanh� 


2kBTe
�tanh� 
 + 	

2kBTe
� + coth� 	

2kBTp
�

��tanh� 
 + 	

2kBTe
� − tanh� 


2kBTe
�	 − 1.

The kernel K�
 ,	� is in general position dependent, and
thereby it makes also the collision integral depend on the
position. Once this collision integral is known, it can be in-
serted in a kinetic equation, such as those presented in Ref.
4.

In what follows, we describe the electron-phonon scatter-
ing inside the SNS junction in terms of the scattering rate
and the heat current flowing between the electron and pho-
non systems. In order to find the density of states and the
anomalous function inside the normal region of the SNS
junction, we solve numerically the Usadel equation4,7,10,11

D � · �ĝR � ĝR� = 
− i�
 + i��
̂3, ĝR� , �2�

where � is a small positive parameter describing inelastic
scattering and the retarded Green’s function ĝR satisfies the

normalization condition �ĝR�2= 1̂. We assume that the NS
interfaces are clean and that ĝR obtains the form of the bulk
Green’s function ĝbulk

R =
+ /�
+
2 −�2
̂3+� /�
+

2 −�2
cos���i
̂2
+sin���i
̂1� at these boundaries. Here 
+=
+ i�, � is the

absolute value of the superconducting order parameter, � is
its phase, and 
̂i are the Pauli matrices in Nambu space. For
lower-transparency junctions the proximity effect and
thereby the effects described below will be reduced.10

III. SCATTERING RATE

Close to equilibrium, the electron-phonon scattering can
be described with an energy-dependent scattering rate.12 The
latter can be obtained by assuming that the Keldysh part of
the scattering self-energy is related to the retarded �R� and

advanced �A� parts via �̂K= ��̂R− �̂A�fL and similarly for the
Green’s function, ĝK��ĝR− ĝA��fL+�fL�. This gives us IL
��e-p

SNS�fL with

�e-p
SNS =

1

2
Tr
�ĝR − ĝA���̂R − �̂A��

= �� d		2 sgn�	�K�
,	�
cosh� 


2kBT
�

sinh� 	

2kBT
�cosh� 
 + 	

2kBT
� .

�3�

In the absence of superconductivity, N�
��1 is approxi-
mately a constant and Fc=Fs
0. In this case at 
=0 we get
�e-p

N =7���3��kBT�3.13

The scattering rate is plotted in Fig. 2 as a function of
energy for a few phases � and at two different temperatures.
The plotted rate is averaged across the weak link,

�e-p =
1

L
�

0

L

dx�e-p
SNS�x� ,

and normalized to �e-p
N to illustrate the corrections due to the

proximity effect. At energies 
�kBT the rate rises as 
3 in
the absence of superconductivity. The main modification due
to the proximity effect is the phase-dependent minigap,
which causes a huge drop in the scattering rates. Moreover,
above the minigap the rates are slightly lower than in the
absence of the proximity effect—this is due to the fact that
within a thermal coherence length �T=��D / �2�kBT� from
the NS interfaces electron-phonon coupling is weakened at
any value of the phase �see Fig. 3�.

IV. HEAT CURRENT

The most relevant quantity in describing the electron-
phonon interaction is the heat current associated with a tem-
perature difference in the electron and phonon systems. This
quantity can be described also far from equilibrium, i.e., for
arbitrary difference between the electron and phonon tem-
peratures. The heat current density is obtained by multiply-
ing IL with energy 
 and the normal-state density of states �F
at the Fermi energy and integrating over the energy

Pe-p = ��F� d
d	
	2 sgn�	�K�
,	�R�
,	;Te,Tp� . �4�

In the normal state, the integral can be evaluated analytically,
with the result14
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Pe-p
N = � �Tp

5 − Te
5� , �5�

where �=24��5��FkB
5�. Measured values of � in different

metals are tabulated in Ref. 1.
In most cases, the heat diffusion within the normal metal

is much stronger than out from it. In this case the variations
in the temperature of the normal metal become small and the
average temperature is determined by the rate integrated over
the volume of the junction, i.e.,

Q̇e-p = A�
0

L

dxPe-p�x� . �6�

Here A is the cross section of the normal metal. In the normal

case Pe-p
N is independent of position, and thus Q̇e-p

N = Pe-p
N �,

where �=AL is the volume of the normal metal.
Proximity effect changes the electron-phonon heat current

drastically. Most of the changes are limited within a thermal
coherence length �T=��D / �2�kBT� from the superconduct-

ors. This is illustrated in Fig. 3, which shows Pe-p normalized
to Pe-p

N as a function of position and temperature. Note that
changing Te inside the normal metal does not affect the su-
perconducting gap as the superconductors are assumed to be
at the phonon temperature.

A relevant factor for the SNS system is the relation of the
energy gap inside the superconductor to the Thouless energy
of the weak link. This ratio is equal to the square of the ratio
between the length of the junction and the superconducting
coherence length. Figure 4 shows the position-averaged heat
current as a function of electron temperature for different
lengths of the junction. At low temperatures below the mini-
gap, kBT�Eg, the heat current is vanishingly small because
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FIG. 2. �Color online� Phase and energy dependences of the
electron-phonon scattering rate �e-p normalized to the normal-state
zero-energy result �e-p

N =7���3��kBT�3 at two different temperatures
�top: kBT=ETh /2; bottom: kBT=5ETh�. We have assumed �0

=20ETh and averaged the rates across the normal-metal piece. The
solid line shows the energy dependence obtained in the normal case
for which K�
 ,	�=1. Note the logarithmic scale of the figure. The
exact low-energy values in the presence of the proximity effect
depend on the magnitude of the inelastic-scattering parameter � in
Eq. �2�. Here and throughout we have chosen �=10−5ETh.
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FIG. 3. �Color online� Position- and temperature-dependent heat
current density Pe-p between the electron and phonon systems inside
the normal part of the SNS system of length L. Here �=0, �
=20ETh, Tp=0, and the heat current density has been normalized to
the normal-state value Pe-p

N =�Te
5.

(L/ξ0)2

kBTe/ETh

. .
Qe-p/QN

e-p

FIG. 4. �Color online� Dependence of the heat current on elec-
tron temperature and the length L of the junction compared to the
zero-temperature coherence length �0=��D /�. Here �=0 and Tp

=0.
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of the lack of states inside the normal metal. However, also
at higher temperatures there is some reduction, whose mea-
surement is well within reach of state-of-the-art thermom-
etry.

Apart from the temperature and length of the junction, the
nature of the proximity effect is quite sensitive to the phase
difference � between the superconductors. This sensitivity is
mainly due to the phase-dependent minigap in the density of

states. This is illustrated in Fig. 5, where Q̇e-p is plotted as a
function of �. The strongest dependence takes place natu-
rally at temperatures close to the phase-dependent minigap.
However, some phase dependence is still remaining even at
higher temperatures.

In the long-junction regime L��0, �=0, and tempera-
tures up to some 10ET /kB, the temperature dependence of the

power Q̇e-p can be fitted rather well to a curve of the form

Q̇e-p = Q̇e-p
N exp�− T�/T� , �7�

where T�=cETh /kB is a temperature scale describing the
proximity-induced variations. For the prefactor we get c
�3.5, . . . ,3.7, depending on how large temperatures are in-
cluded in the fit. This behavior resembles that of bulk
superconductors,15 but the gap � is replaced by T�. However,
in the SNS case the exponential behavior extends to com-
paratively larger temperatures than in bulk superconductors
where one has to assume kBT�� for the law to be valid.

As seen in Fig. 5, Q̇e-p becomes independent of the phase
at temperatures larger than the zero-phase minigap. In this
case the temperature dependence can again be expressed
with Eq. �7�. However, for low temperatures the effective
temperature scale becomes of the order of the phase-
dependent minigap Eg���.

V. EXPERIMENTAL DETERMINATION

A possible experimental setup to measure the effects dis-
cussed above is shown in Fig. 6�a�. The structure can be

fabricated through standard lithography techniques.1 The de-
vice consists of a radio-frequency superconducting quantum
interference device �SQUID�,16,17 where a superconducting
loop is interrupted by a N wire of length L. The strength of
the electron-phonon interaction in N can be modulated peri-
odically by an externally applied magnetic field, which gives
rise to a total flux � through the loop area. Neglecting the
inductance of the superconducting loop, the phase difference
then becomes �=� / �h /2e�. The SQUID allows magneto-
electric characterization of the SNS junction, and thus also
the determination of some of the relevant parameters of the
N wire. For instance, the Thouless energy of the junction can
be extracted from the temperature dependence of the SQUID
critical supercurrent. Alternatively, the phase can be con-
trolled by an externally driven current in the case when the
superconductors are not connected. However, in these cases
only phases ��−� /2, . . . ,� /2 can be accessed. The N re-
gion is connected to four additional superconducting elec-
trodes through oxide barriers, so to realize normal-metal-
insulator-superconductor �NIS� tunnel junctions. The NIS
junctions are used to heat �or eventually to cool� the elec-
trons in N and as sensitive thermometers to measure Te.
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FIG. 5. �Color online� Phase-dependent electron-phonon heat
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The closing minigap for �→� shows up as a rapid increase in Q̇e-p

at low temperatures. For kBTe somewhat larger than the minigap,
the phase dependence becomes much weaker although the overall
heat current is still smaller than in the normal state.
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FIG. 6. �Color online� �a� Scheme of a possible experimental
setup. A radio-frequency �rf� SQUID containing a SNS junction is
threaded by a magnetic flux � which allows one to tune the
electron-phonon interaction in the N region. Additional supercon-
ducting electrodes tunnel coupled to the N wire allow one to probe

the averaged phase-dependent Q̇e-p�Te ,Tp ,��. These serve both as
heaters �h� and thermometers �th�. �b� Sketch of the thermal model
of the N wire �see text�. �c� Steady-state electron temperature inside
the SNS junction as a function of the phase for a few driving pow-
ers at a phonon temperature Tp=ETh / �2kB�. For this curve, we
chose ETh /kB=100 mK �see text�.
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Both the NS contacts and the NIS junctions provide nearly
ideal thermal isolation of the N region, and therefore in the
following we neglect the thermal conductance through the
superconductors. One further advantage of using tunnel junc-
tions directly connected to N stems from the fact that the
state of the electron system and the superconducting correla-
tions induced by proximity from S electrodes will be virtu-
ally unaffected by the presence of tunnel-coupled probes.18

The basic requirements for this are that the currents driven
through the NIS junctions are much smaller than the SNS
critical current and that the tunnel junction resistances are
much larger than the resistance of the normal metal. These
requirements are easy to satisfy in practice.

Figure 6�b� shows a sketch of the relevant thermal model
of the wire in the proposed setup.15 Upon heating electrons

with a constant power Q̇H provided by the NIS heaters the
steady-state Te established in N will depend on the energy
relaxation mechanisms occurring in the wire. In metals at
low lattice temperature �typically below 1 K�, the main re-
laxation mechanism is related to electron-phonon interaction
which in the present setup is strongly phase dependent. In
practice, what will be measured is the power flowing be-
tween the electron and phonon systems averaged over the

wire volume �, i.e., Q̇e-p�Te ,Tp ,��. At fixed lattice tempera-
ture the predicted steady-state phase-dependent Te thus fol-
lows from the solution of the thermal-balance equation

Q̇H + Q̇e-p�Te,Tp,�� = 0. �8�

The resulting electron temperature Te can then be probed
with the NIS thermometers.

The result of such a heat balance is plotted in Fig. 6�c�
which displays the steady-state electron temperature Te for

some values of Q̇H as the phase is varied and the bath tem-
perature is Tp=50 mK. To illustrate the strength of the ef-

fect, we chose a typical ETh /kB=100 mK. For each Q̇H the
electronic temperature is strongly modulated by the phase,
and it decreases by an increasing � due to the enhancement
of the electron-phonon interaction for phase difference close

to � �see Fig. 5�. In particular, for Q̇H=0.1���ETh /kB�5,
variation in Te of the order of 40 mK �0.4ETh� can be
achieved by varying the phase �flux�, while even for the large

injected power Q̇H=100���ETh /kB�5 the variation amplitude
is somewhat below 30 mK �0.3ETh�.

Let us discuss some of the typical material parameters for
the proposed measurement. By choosing, for instance, alu-
minum �Al� as S material �with �0=200 �eV�, copper �Cu�
as N wire �with D=0.01 m2 s−1 and �=2�109 Wm−3 K−5,
see Ref. 1�, and length L=0.8 �m, we get �0 /ET=19 and
ETh /kB=10 �eV=120 mK. Moreover, if we assume that the
wire is 50 nm thick and 400 nm wide, the “unit power” in
Fig. 6 is ���ETh /kB�5=0.8 fW.

VI. CONCLUSIONS

In bulk superconductors, the presence of the energy gap
leads to a strong suppression of the heat transport between
the electron and phonon systems.15 In this paper we show

that a similar effect can be expected for normal metals in
close proximity to the superconductors and suggest how it
can be probed. Additionally, the heat current between the two
systems can be controlled in situ by changing the phase dif-
ference between two superconducting contacts. The suppres-
sion of the heat conductance is especially relevant in thermal
radiation detectors—for example in the proximity Josephson
sensor �PJS� suggested in Ref. 2. This is because of two
factors. First, the weaker the thermal relaxation, the stronger
is the temperature rise for a given power of radiation. Sec-
ond, the main cause of noise in these devices is related to the
strongest thermal relaxation channel, which typically is the
electron-phonon coupling. Reducing this coupling will there-
fore also reduce the noise. Both of these factors will improve
the sensitivity of such thermal detectors.
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APPENDIX

The self-energy for the electron-phonon scattering in the
case of thermal phonons at temperature Tp and with the gen-
eral Keldysh Green’s function for the electrons is given by8

�̌e-p = ��̂R �̂K

0 �̂A
� ,

where

�̂K = �� d	

4
	2 sgn�	��coth� 	

2kBTp
�ĝK�
 + 	� − Â�
 + 	�	 ,

�̂R/A = �� d	

4
	2 sgn�	��coth� 	

2kBTp
�ĝR/A�
 + 	�

�
1

2
ĝK�
 + 	�	 .

Here Â= ĝR− ĝA is the spectral function and ĝR,A,K are the
retarded, advanced, and the Keldysh Green’s functions, re-
spectively. From these self-energies, the collision integral ap-
pearing in Usadel equation is

Ǐe-p = � ÎR ÎK

0 ÎA
� = 
ǧ,�̌e-p� .

We are mostly interested in the Keldysh part, which has two

components: IL=Tr
ÎK� /2 and IT=Tr

̂3ÎK� /2. In the follow-

ing we parametrize the Green’s function by ĝK= ĝRĥ− ĥĝA,

ĥ= fL
̂0+ fT
̂3, and
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ĝR = � g fei�

− fe−i� − g
� .

Moreover, the normalization condition implies g2− f2=1.
The advanced Green’s function can then be obtained by ĝA

=−
̂3�ĝR�†
̂3. Note that inside a proximity structure, all the
three variables, g, f , and �, are in general complex valued.
Moreover, we define N=Re
g� �local density of states� and
the real quantities

Fc = Re
f cos����, Fs = Re
f sin���� ,

F̃c = Im
f cos����, F̃s = Im
f sin���� . �A1�

After some lengthy but straightforward algebra, the collision
integrals become

IT = �� d		2 sgn�	��
Fc�
 + 	�F̃s�
� − Fs�
 + 	�F̃c�
��

��coth� 	

2kBTp
� fL�
 + 	� − 1	 + 
Fs�
�F̃c�
 + 	�

− Fc�
�F̃s�
 + 	��coth� 	

2kBTp
� fL�
� + 
N�
�N�
 + 	�

+ F̃c�
 + 	�F̃c�
� + F̃s�
 + 	�F̃s�
��coth� 	

2kBTp
�

�
fT�
 + 	� − fT�
�� + N�
�N�
 + 	�
fL�
�fT�
 + 	�

+ fL�
 + 	�fT�
��� �A2�

and

IL = �� d		2 sgn�	��
N�
�N�
 + 	� − Fc�
�Fc�
 + 	�

− Fs�
�Fs�
 + 	���coth� 	

2kBTp
�
fL�
 + 	� − fL�
�� − 1

+ fL�
�fL�
 + 	�� + 
Fs�
�F̃c�
 + 	� − Fc�
�F̃s�
 + 	��

�� fL�
� + coth� 	

2kBTp
�	 fT�
 + 	� + 
Fs�
 + 	�F̃c�
�

− Fc�
 + 	�F̃s�
��� fL�
 + 	� − coth� 	

2kBTp
�	 fT�
�

+ 
N�
�N�
 + 	� − F̃c�
�F̃c�
 + 	� − F̃s�
�F̃s�
 + 	��fT�
�

�fT�
 + 	�� . �A3�

These simplify considerably in the quasiequilibrium limit
where fT=0 and fL=tanh

 / �2kBT��. In that case one obtains
the collision integral presented in Eq. �1�.
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